Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
Front Med (Lausanne) ; 10: 1275140, 2023.
Article in English | MEDLINE | ID: mdl-37908846

ABSTRACT

In recognition of the high rates of undetected tuberculosis in the community, the World Health Organization (WHO) encourages targeted active case finding (ACF) among "high-risk" populations. While this strategy has led to increased case detection in these populations, the epidemic impact of these interventions has not been demonstrated. Historical data suggest that population-wide (untargeted) ACF can interrupt transmission in high-incidence settings, but implementation remains lacking, despite recent advances in screening tools. The reservoir of latent infection-affecting up to a quarter of the global population -complicates elimination efforts by acting as a pool from which future tuberculosis cases may emerge, even after all active cases have been treated. A holistic case finding strategy that addresses both active disease and latent infection is likely to be the optimal approach for rapidly achieving sustainable progress toward TB elimination in a durable way, but safety and cost effectiveness have not been demonstrated. Sensitive, symptom-agnostic community screening, combined with effective tuberculosis treatment and prevention, should eliminate all infectious cases in the community, whilst identifying and treating people with latent infection will also eliminate tomorrow's tuberculosis cases. If real strides toward global tuberculosis elimination are to be made, bold strategies are required using the best available tools and a long horizon for cost-benefit assessment.

2.
Sci Rep ; 13(1): 15319, 2023 09 15.
Article in English | MEDLINE | ID: mdl-37714942

ABSTRACT

Infectious disease outbreaks often exhibit superspreader dynamics, where most infected people generate no, or few secondary cases, and only a small fraction of individuals are responsible for a large proportion of transmission. Although capturing this heterogeneity is critical for estimating outbreak risk and the effectiveness of group-specific interventions, it is typically neglected in compartmental models of infectious disease transmission-which constitute the most common transmission dynamic modeling framework. In this study we propose different classes of compartmental epidemic models that incorporate transmission heterogeneity, fit them to a number of real outbreak datasets, and benchmark their performance against the canonical superspreader model (i.e., the negative binomial branching process model). We find that properly constructed compartmental models can capably reproduce observed superspreader dynamics and we provide the pathogen-specific parameter settings required to do so. As a consequence, we also show that compartmental models parameterized according to a binary clinical classification have limited support.


Subject(s)
Epidemics , Epidemiological Models , Humans , Disease Outbreaks , Benchmarking , Models, Statistical
4.
Int J Epidemiol ; 51(5): 1433-1445, 2022 10 13.
Article in English | MEDLINE | ID: mdl-35323964

ABSTRACT

BACKGROUND: Ambitious population-based screening programmes for latent and active tuberculosis (TB) were implemented in the Republic of the Marshall Islands in 2017 and 2018. METHODS: We used a transmission dynamic model of TB informed by local data to capture the Marshall Islands epidemic's historical dynamics. We then used the model to project the future epidemic trajectory following the active screening interventions, as well as considering a counterfactual scenario with no intervention. We also simulated future scenarios including periodic interventions similar to those previously implemented, to assess their ability to reach the End TB Strategy targets and TB pre-elimination in the Marshall Islands. RESULTS: The screening activities conducted in 2017 and 2018 were estimated to have reduced TB incidence and mortality by around one-third in 2020, and are predicted to achieve the End TB Strategy milestone of 50% incidence reduction by 2025 compared with 2015. Screening interventions had a considerably greater impact when latent TB screening and treatment were included, compared with active case finding alone. Such combined programmes implemented at the national level could achieve TB pre-elimination around 2040 if repeated every 2 years. CONCLUSIONS: Our model suggests that it would be possible to achieve TB pre-elimination by 2040 in the Marshall Islands through frequent repetition of the same interventions as those already implemented in the country. It also highlights the importance of including latent infection testing in active screening activities.


Subject(s)
Epidemics , Latent Tuberculosis , Tuberculosis , Humans , Incidence , Latent Tuberculosis/diagnosis , Latent Tuberculosis/epidemiology , Mass Screening , Tuberculosis/diagnosis , Tuberculosis/epidemiology , Tuberculosis/prevention & control
5.
BMC Infect Dis ; 22(1): 82, 2022 Jan 24.
Article in English | MEDLINE | ID: mdl-35073862

ABSTRACT

BACKGROUND: Antimicrobial resistance develops following the accrual of mutations in the bacterial genome, and may variably impact organism fitness and hence, transmission risk. Classical representation of tuberculosis (TB) dynamics using a single or two strain (DS/MDR-TB) model typically does not capture elements of this important aspect of TB epidemiology. To understand and estimate the likelihood of resistance spreading in high drug-resistant TB incidence settings, we used epidemiological data to develop a mathematical model of Mycobacterium tuberculosis (Mtb) transmission. METHODS: A four-strain (drug-susceptible (DS), isoniazid mono-resistant (INH-R), rifampicin mono-resistant (RIF-R) and multidrug-resistant (MDR)) compartmental deterministic Mtb transmission model was developed to explore the progression from DS- to MDR-TB in The Philippines and Viet Nam. The models were calibrated using data from national tuberculosis prevalence (NTP) surveys and drug resistance surveys (DRS). An adaptive Metropolis algorithm was used to estimate the risks of drug resistance amplification among unsuccessfully treated individuals. RESULTS: The estimated proportion of INH-R amplification among failing treatments was 0.84 (95% CI 0.79-0.89) for The Philippines and 0.77 (95% CI 0.71-0.84) for Viet Nam. The proportion of RIF-R amplification among failing treatments was 0.05 (95% CI 0.04-0.07) for The Philippines and 0.011 (95% CI 0.010-0.012) for Viet Nam. CONCLUSION: The risk of resistance amplification due to treatment failure for INH was dramatically higher than RIF. We observed RIF-R strains were more likely to be transmitted than acquired through amplification, while both mechanisms of acquisition were important contributors in the case of INH-R. These findings highlight the complexity of drug resistance dynamics in high-incidence settings, and emphasize the importance of prioritizing testing algorithms which allow for early detection of INH-R.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis, Multidrug-Resistant , Tuberculosis , Antitubercular Agents/pharmacology , Antitubercular Agents/therapeutic use , Drug Resistance , Humans , Isoniazid , Microbial Sensitivity Tests , Mycobacterium tuberculosis/genetics , Rifampin , Tuberculosis/drug therapy , Tuberculosis/epidemiology , Tuberculosis, Multidrug-Resistant/drug therapy , Tuberculosis, Multidrug-Resistant/epidemiology
6.
Epidemics ; 37: 100517, 2021 12.
Article in English | MEDLINE | ID: mdl-34739906

ABSTRACT

INTRODUCTION: As of 3rd June 2021, Malaysia is experiencing a resurgence of COVID-19 cases. In response, the federal government has implemented various non-pharmaceutical interventions (NPIs) under a series of Movement Control Orders and, more recently, a vaccination campaign to regain epidemic control. In this study, we assessed the potential for the vaccination campaign to control the epidemic in Malaysia and four high-burden regions of interest, under various public health response scenarios. METHODS: A modified susceptible-exposed-infectious-recovered compartmental model was developed that included two sequential incubation and infectious periods, with stratification by clinical state. The model was further stratified by age and incorporated population mobility to capture NPIs and micro-distancing (behaviour changes not captured through population mobility). Emerging variants of concern (VoC) were included as an additional strain competing with the existing wild-type strain. Several scenarios that included different vaccination strategies (i.e. vaccines that reduce disease severity and/or prevent infection, vaccination coverage) and mobility restrictions were implemented. RESULTS: The national model and the regional models all fit well to notification data but underestimated ICU occupancy and deaths in recent weeks, which may be attributable to increased severity of VoC or saturation of case detection. However, the true case detection proportion showed wide credible intervals, highlighting incomplete understanding of the true epidemic size. The scenario projections suggested that under current vaccination rates complete relaxation of all NPIs would trigger a major epidemic. The results emphasise the importance of micro-distancing, maintaining mobility restrictions during vaccination roll-out and accelerating the pace of vaccination for future control. Malaysia is particularly susceptible to a major COVID-19 resurgence resulting from its limited population immunity due to the country's historical success in maintaining control throughout much of 2020.


Subject(s)
COVID-19 , Epidemiological Models , Humans , Malaysia/epidemiology , SARS-CoV-2 , Vaccination
7.
Nat Commun ; 12(1): 6266, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34725323

ABSTRACT

During 2020, Victoria was the Australian state hardest hit by COVID-19, but was successful in controlling its second wave through aggressive policy interventions. We calibrated a detailed compartmental model of Victoria's second wave to multiple geographically-structured epidemic time-series indicators. We achieved a good fit overall and for individual health services through a combination of time-varying processes, including case detection, population mobility, school closures, physical distancing and face covering usage. Estimates of the risk of death in those aged ≥75 and of hospitalisation were higher than international estimates, reflecting concentration of cases in high-risk settings. We estimated significant effects for each of the calibrated time-varying processes, with estimates for the individual-level effect of physical distancing of 37.4% (95%CrI 7.2-56.4%) and of face coverings of 45.9% (95%CrI 32.9-55.6%). That the multi-faceted interventions led to the dramatic reversal in the epidemic trajectory is supported by our results, with face coverings likely particularly important.


Subject(s)
COVID-19/epidemiology , COVID-19/prevention & control , Epidemics , Adolescent , Adult , COVID-19/transmission , Hospitalization , Humans , Middle Aged , Models, Theoretical , Physical Distancing , SARS-CoV-2 , Schools , Victoria , Young Adult
8.
Med J Aust ; 215(9): 427-432, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34477236

ABSTRACT

OBJECTIVES: To analyse the outcomes of COVID-19 vaccination by vaccine type, age group eligibility, vaccination strategy, and population coverage. DESIGN: Epidemiologic modelling to assess the final size of a COVID-19 epidemic in Australia, with vaccination program (Pfizer, AstraZeneca, mixed), vaccination strategy (vulnerable first, transmitters first, untargeted), age group eligibility threshold (5 or 15 years), population coverage, and pre-vaccination effective reproduction number ( Reffv¯ ) for the SARS-CoV-2 Delta variant as factors. MAIN OUTCOME MEASURES: Numbers of SARS-CoV-2 infections; cumulative hospitalisations, deaths, and years of life lost. RESULTS: Assuming Reffv¯ = 5, the current mixed vaccination program (vaccinating people aged 60 or more with the AstraZeneca vaccine and people under 60 with the Pfizer vaccine) will not achieve herd protection unless population vaccination coverage reaches 85% by lowering the vaccination eligibility age to 5 years. At Reffv¯ = 3, the mixed program could achieve herd protection at 60-70% population coverage and without vaccinating 5-15-year-old children. At Reffv¯ = 7, herd protection is unlikely to be achieved with currently available vaccines, but they would still reduce the number of COVID-19-related deaths by 85%. CONCLUSION: Vaccinating vulnerable people first is the optimal policy when population vaccination coverage is low, but vaccinating more socially active people becomes more important as the Reffv¯ declines and vaccination coverage increases. Assuming the most plausible Reffv¯ of 5, vaccinating more than 85% of the population, including children, would be needed to achieve herd protection. Even without herd protection, vaccines are highly effective in reducing the number of deaths.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/prevention & control , Immunity, Herd , Mass Vaccination/organization & administration , SARS-CoV-2/pathogenicity , Adolescent , Adult , Age Factors , Australia/epidemiology , BNT162 Vaccine , COVID-19/epidemiology , COVID-19/immunology , COVID-19/virology , COVID-19 Vaccines/administration & dosage , Child , Child, Preschool , Computer Simulation , Humans , Immunogenicity, Vaccine , Mass Vaccination/statistics & numerical data , Middle Aged , Models, Immunological , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Vaccination Coverage/organization & administration , Vaccination Coverage/statistics & numerical data , Young Adult
9.
Paediatr Respir Rev ; 39: 32-39, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34417121

ABSTRACT

Mathematical modelling has played a pivotal role in understanding the epidemiology of and guiding public health responses to the ongoing coronavirus disease of 2019 (COVID-19) pandemic. Here, we review the role of epidemiological models in understanding evolving epidemic characteristics, including the effects of vaccination and Variants of Concern (VoC). We highlight ways in which models continue to provide important insights, including (1) calculating the herd immunity threshold and evaluating its limitations; (2) verifying that nascent vaccines can prevent severe disease, infection, and transmission but may be less efficacious against VoC; (3) determining optimal vaccine allocation strategies under efficacy and supply constraints; and (4) determining that VoC are more transmissible and lethal than previously circulating strains, and that immune escape may jeopardize vaccine-induced herd immunity. Finally, we explore how models can help us anticipate and prepare for future stages of COVID-19 epidemiology (and that of other diseases) through forecasts and scenario projections, given current uncertainties and data limitations.


Subject(s)
COVID-19 Vaccines/supply & distribution , COVID-19/epidemiology , COVID-19/prevention & control , Communicable Disease Control/organization & administration , Pneumonia, Viral/epidemiology , Pneumonia, Viral/prevention & control , Humans , Models, Theoretical , Pandemics/prevention & control , Pneumonia, Viral/virology , SARS-CoV-2
10.
Lancet Reg Health West Pac ; 14: 100211, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34308400

ABSTRACT

BACKGROUND: COVID-19 initially caused less severe outbreaks in many low- and middle-income countries (LMIC) compared with many high-income countries, possibly because of differing demographics, socioeconomics, surveillance, and policy responses. Here, we investigate the role of multiple factors on COVID-19 dynamics in the Philippines, a LMIC that has had a relatively severe COVID-19 outbreak. METHODS: We applied an age-structured compartmental model that incorporated time-varying mobility, testing, and personal protective behaviors (through a "Minimum Health Standards" policy, MHS) to represent the first wave of the Philippines COVID-19 epidemic nationally and for three highly affected regions (Calabarzon, Central Visayas, and the National Capital Region). We estimated effects of control measures, key epidemiological parameters, and interventions. FINDINGS: Population age structure, contact rates, mobility, testing, and MHS were sufficient to explain the Philippines epidemic based on the good fit between modelled and reported cases, hospitalisations, and deaths. The model indicated that MHS reduced the probability of transmission per contact by 13-27%. The February 2021 case detection rate was estimated at ~8%, population recovered at ~9%, and scenario projections indicated high sensitivity to MHS adherence. INTERPRETATION: COVID-19 dynamics in the Philippines are driven by age, contact structure, mobility, and MHS adherence. Continued compliance with low-cost MHS should help the Philippines control the epidemic until vaccines are widely distributed, but disease resurgence may be occurring due to a combination of low population immunity and detection rates and new variants of concern.

11.
Lancet Reg Health West Pac ; 11: 100147, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34327358

ABSTRACT

BACKGROUND: We aimed to estimate the disease burden of Tuberculosis (TB) and return on investment of TB care in selected high-burden countries of the Western Pacific Region (WPR) until 2030. METHODS: We projected the TB epidemic in Viet Nam and Lao People's Democratic Republic (PDR) 2020-2030 using a mathematical model under various scenarios: counterfactual (no TB care); baseline (TB care continues at current levels); and 12 different diagnosis and treatment interventions. We retrieved previous modeling results for China and the Philippines. We pooled the new and existing information on incidence and deaths in the four countries, covering >80% of the TB burden in WPR. We estimated the return on investment of TB care and interventions in Viet Nam and Lao PDR using a Solow model. FINDINGS: In the baseline scenario, TB incidence in the four countries decreased from 97•0/100,000/year (2019) to 90•1/100,000/year (2030), and TB deaths from 83,300/year (2019) to 71,100/year (2030). Active case finding (ACF) strategies (screening people not seeking care for respiratory symptoms) were the most effective single interventions. Return on investment (2020-2030) for TB care in Viet Nam and Lao PDR ranged US$4-US$49/dollar spent; additional interventions brought up to US$2•7/dollar spent. INTERPRETATION: In the modeled countries, TB incidence will only modestly decrease without additional interventions. Interventions that include ACF can reduce TB burden but achieving the End TB incidence and mortality targets will be difficult without new transformational tools (e.g. vaccine, new diagnostic tools, shorter treatment). However, TB care, even at its current level, can bring a multiple-fold return on investment. FUNDING: World Health Organization Western Pacific Regional Office; Swiss National Science Foundation Grant 163878.

12.
J Med Ethics ; 47(8): 553-562, 2021 08.
Article in English | MEDLINE | ID: mdl-34059520

ABSTRACT

Liberty-restricting measures have been implemented for centuries to limit the spread of infectious diseases. This article considers if and when it may be ethically acceptable to impose selective liberty-restricting measures in order to reduce the negative impacts of a pandemic by preventing particularly vulnerable groups of the community from contracting the disease. We argue that the commonly accepted explanation-that liberty restrictions may be justified to prevent harm to others when this is the least restrictive option-fails to adequately accommodate the complexity of the issue or the difficult choices that must be made, as illustrated by the COVID-19 pandemic. We introduce a dualist consequentialist approach, weighing utility at both a population and individual level, which may provide a better framework for considering the justification for liberty restrictions. While liberty-restricting measures may be justified on the basis of significant benefits to the population and small costs for overall utility to individuals, the question of whether it is acceptable to discriminate should be considered separately. This is because the consequentialist approach does not adequately account for the value of equality. This value may be protected through the application of an additional proportionality test. An algorithm for making decisions is proposed. Ultimately whether selective liberty-restricting measures are imposed will depend on a range of factors, including how widespread infection is in the community, the level of risk and harm a society is willing to accept, and the efficacy and cost of other mitigation options.


Subject(s)
COVID-19/prevention & control , Communicable Disease Control , Ethical Theory , Freedom , Pandemics , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged , Pandemics/prevention & control , SARS-CoV-2 , Young Adult
13.
Thorax ; 76(11): 1131-1141, 2021 11.
Article in English | MEDLINE | ID: mdl-33893231

ABSTRACT

RATIONALE: The heterogeneity in efficacy observed in studies of BCG vaccination is not fully explained by currently accepted hypotheses, such as latitudinal gradient in non-tuberculous mycobacteria exposure. METHODS: We updated previous systematic reviews of the effectiveness of BCG vaccination to 31 December 2020. We employed an identical search strategy and inclusion/exclusion criteria to these earlier reviews, but reclassified several studies, developed an alternative classification system and considered study demography, diagnostic approach and tuberculosis (TB)-related epidemiological context. MAIN RESULTS: Of 21 included trials, those recruiting neonates and children aged under 5 were consistent in demonstrating considerable protection against TB for several years. Trials in high-burden settings with shorter follow-up also showed considerable protection, as did most trials in settings of declining burden with longer follow-up. However, the few trials performed in high-burden settings with longer follow-up showed no protection, sometimes with higher case rates in the vaccinated than the controls in the later follow-up period. CONCLUSIONS: The most plausible explanatory hypothesis for these results is that BCG protects against TB that results from exposure shortly after vaccination. However, we found no evidence of protection when exposure occurs later from vaccination, which would be of greater importance in trials in high-burden settings with longer follow-up. In settings of declining burden, most exposure occurs shortly following vaccination and the sustained protection observed for many years thereafter represents continued protection against this early exposure. By contrast, in settings of continued intense transmission, initial protection subsequently declines with repeated exposure to Mycobacterium tuberculosis or other pathogens.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis , BCG Vaccine , Child , Humans , Infant, Newborn , Tuberculosis/epidemiology , Tuberculosis/prevention & control , Vaccination
14.
Clin Infect Dis ; 73(1): e88-e96, 2021 07 01.
Article in English | MEDLINE | ID: mdl-32766718

ABSTRACT

BACKGROUND: Tuberculosis (TB) natural history remains poorly characterized, and new investigations are impossible as it would be unethical to follow up TB patients without treatment. METHODS: We considered the reports identified in a previous systematic review of studies from the prechemotherapy era, and extracted detailed data on mortality over time. We used a Bayesian framework to estimate the rates of TB-induced mortality and self-cure. A hierarchical model was employed to allow estimates to vary by cohort. Inference was performed separately for smear-positive TB (SP-TB) and smear-negative TB (SN-TB). RESULTS: We included 41 cohorts of SP-TB patients and 19 cohorts of pulmonary SN-TB patients in the analysis. The median estimates of the TB-specific mortality rates were 0.389 year-1 (95% credible interval [CrI], .335-.449) and 0.025 year-1 (95% CrI, .017-.035) for SP-TB and SN-TB patients, respectively. The estimates for self-recovery rates were 0.231 year-1 (95% CrI, .177-.288) and 0.130 year-1 (95% CrI, .073-.209) for SP-TB and SN-TB patients, respectively. These rates correspond to average durations of untreated TB of 1.57 years (95% CrI, 1.37-1.81) and 5.35 years (95% CrI, 3.42-8.23) for SP-TB and SN-TB, respectively, when assuming a non-TB-related mortality rate of 0.014 year-1 (ie, a 70-year life expectancy). CONCLUSIONS: TB-specific mortality rates are around 15 times higher for SP-TB than for SN-TB patients. This difference was underestimated dramatically in previous TB modeling studies, raising concerns about the accuracy of the associated predictions. Despite being less infectious, SN-TB may be responsible for equivalent numbers of secondary infections as SP-TB due to its much longer duration.


Subject(s)
Tuberculosis, Pulmonary , Tuberculosis , Bayes Theorem , Cohort Studies , Humans , Time Factors , Tuberculosis, Pulmonary/epidemiology
16.
Epidemics ; 30: 100374, 2020 03.
Article in English | MEDLINE | ID: mdl-31685416

ABSTRACT

TB mathematical models employ various assumptions and approaches in dealing with the heterogeneous infectiousness of persons with active TB. We reviewed existing approaches and considered the relationship between them and existing epidemiological evidence. We searched the following electronic bibliographic databases from inception to 9 October 2018: MEDLINE, EMBASE, Biosis, Global Health and Scopus. Two investigators extracted data using a standardised data extraction tool. We included in the review any transmission dynamic model of M. tuberculosis transmission explicitly simulating heterogeneous infectiousness of person with active TB. We extracted information including: study objective, model structure, number of active TB compartments, factors used to stratify the active TB compartment, relative infectiousness of each active TB compartment and any intervention evaluated in the model. Our search returned 1899 unique references, of which the full text of 454 records were assessed for eligibility, and 99 studies met the inclusion criteria. Of these, 89 used compartmental models implemented with ordinary differential equations, while the most common approach to stratification of the active TB compartment was to incorporate two levels of infectiousness. However, various clinical characteristics were used to stratify the active TB compartments, and models differed as to whether they permitted transition between these states. Thirty-four models stratified the infectious compartment according to sputum smear status or pulmonary involvement, while 18 models stratified based on health care-related factors. Variation in infectiousness associated with drug-resistant M. tuberculosis was the rationale for stratifying active TB in 33 models, with these models consistently assuming that drug-resistant active TB cases were less infectious. Given the evidence of extensive heterogeneity in infectiousness of individuals with active TB, an argument exists for incorporating heterogeneous infectiousness, although this should be considered in light of the objectives of the study and the research question. PROSPERO Registration: CRD42019111936.


Subject(s)
Models, Theoretical , Tuberculosis/transmission , Comorbidity , Drug Resistance, Bacterial , Humans
17.
BMC Med ; 17(1): 208, 2019 11 22.
Article in English | MEDLINE | ID: mdl-31752895

ABSTRACT

BACKGROUND: Tuberculosis (TB) control efforts are hampered by an imperfect understanding of TB epidemiology. The true age distribution of disease is unknown because a large proportion of individuals with active TB remain undetected. Understanding of transmission is limited by the asymptomatic nature of latent infection and the pathogen's capacity for late reactivation. A better understanding of TB epidemiology is critically needed to ensure effective use of existing and future control tools. METHODS: We use an agent-based model to simulate TB epidemiology in the five highest TB burden countries-India, Indonesia, China, the Philippines and Pakistan-providing unique insights into patterns of transmission and disease. Our model replicates demographically realistic populations, explicitly capturing social contacts between individuals based on local estimates of age-specific contact in household, school and workplace settings. Time-varying programmatic parameters are incorporated to account for the local history of TB control. RESULTS: We estimate that the 15-19-year-old age group is involved in more than 20% of transmission events in India, Indonesia, the Philippines and Pakistan, despite representing only 5% of the local TB incidence. According to our model, childhood TB represents around one fifth of the incident TB cases in these four countries. In China, three quarters of incident TB were estimated to occur in the ≥ 45-year-old population. The calibrated per-contact transmission risk was found to be similar in each of the five countries despite their very different TB burdens. CONCLUSIONS: Adolescents and young adults are a major driver of TB in high-incidence settings. Relying only on the observed distribution of disease to understand the age profile of transmission is potentially misleading.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis/transmission , Adolescent , Adult , Age Distribution , Aged , Child , Child, Preschool , China/epidemiology , Female , Humans , Incidence , India/epidemiology , Indonesia/epidemiology , Male , Middle Aged , Models, Biological , Pakistan/epidemiology , Philippines/epidemiology , Tuberculosis/epidemiology , Young Adult
20.
Trop Med Infect Dis ; 4(2)2019 Apr 24.
Article in English | MEDLINE | ID: mdl-31022901

ABSTRACT

The tuberculosis (TB) health burden in Fiji has been declining in recent years, although challenges remain in improving control of the diabetes co-epidemic and achieving adequate case detection across the widely dispersed archipelago. We applied a mathematical model of TB transmission to the TB epidemic in Fiji that captured the historical reality over several decades, including age stratification, diabetes, varying disease manifestations, and incorrect diagnoses. Next, we simulated six intervention scenarios that are under consideration by the Fiji National Tuberculosis Program. Our findings show that the interventions were able to achieve only modest improvements in disease burden, with awareness raising being the most effective intervention to reduce TB incidence, and treatment support yielding the highest impact on mortality. These improvements would fall far short of the ambitious targets that have been set by the country, and could easily be derailed by moderate increases in the diabetes burden. Furthermore, the effectiveness of the interventions was limited by the extensive pool of latent TB infection, because the programs were directed at only active cases, and thus were unlikely to achieve the desired reductions in burden. Therefore, it is essential to address the co-epidemic of diabetes and treat people with latent TB infection.

SELECTION OF CITATIONS
SEARCH DETAIL
...